Algebra bases

Trigonometric form of complex numbers

DéfinitionConjugate of a complex number

We call complex conjugated of the complex number the complex number

FondamentalProperty of the conjugation :

DéfinitionModulus of a complex number

be a complex number, is a real positive number.

We call modulus of complex number the positive real number

Expression of the modulus:

If

FondamentalProperties of the modulus

which is also true for with the convention

If more generally if :

and

FondamentalArgument of a complex nomber

Case of a complex number of modulus 1

Theorem 

For any complex number of modulus there exists a unique element such that

Definition

The real number is called the main argument of the complex number

For any relative integer we have

The real numbers belonging to are called argments of the complex number

Case of a complex number of arbitrary modulus

Let be a non zero complex number.

The complex number has a modulus of

The argument of the complex number is, by definition, the one of the complex number

Denoting by the positive real number and by an argument of we have:

We denote by an arbitrary argument of the complex number

FondamentalProperties of the argument

By also assuming that

More generally, by assuming non zero:

DéfinitionTrigonometric notation

We denote by the complex number of modulus and of argument

With this notation, the previous formula becomes:

FondamentalMoivres's formula

PrécédentPrécédentSuivantSuivant
AccueilAccueilImprimerImprimerRéalisé avec Scenari (nouvelle fenêtre)