Motions of charged particles inside electromagnetic fields

FondamentalElectric field

Let us consider a punctual charged particle M (\(+q\)) of mass \(m\) in motion in a uniform electrostatic field \(\vec E_0\).

The frame of study is the one of the laboratory. It is supposed to be inertial.

The second law of motion gives the equation of the position of M :

\(m\frac{{d\vec v}}{{dt}} = q\vec E\;\;\;\;\;so\;\;\;\;\;\frac{{d\vec v}}{{dt}} = \frac{q}{m}\vec E\)

We can see an analogy with a material point placed in a uniform gravity field :

\(m\frac{{d\vec v}}{{dt}} = m\vec g\;\;\;\;\;so\;\;\;\;\;\frac{{d\vec v}}{{dt}} = \vec g\)

Thus the motion of the particle will either be a straight line or a parabola.

FondamentalMagnetic field

Power of the magnetic force :

Let us consider a punctual charged particle M (\(+q\)) of mass \(m\) in motion in a uniform magnetostatic field \(\vec B_0\).

The frame of study is the one of the laboratory, it is supposed to be inertial.

The second law of motion gives the equation of the position of M :

\(m\frac{{d\vec v}}{{dt}} = q\vec v \wedge \vec B\)

The power of the magnetic force is zero (\(P = (q\vec v \wedge \vec B).\vec v = 0\)).

By using the work energy theorem :

\(P = \frac{{d{E_c}}}{{dt}} = 0\;\;\;\;\;so\;\;\;\;{E_c} = cste\;\;\;\;and\;\;\;\;\;v = cste\)

A magnetic field does not change the norm of the velocity vector : it only changes its direction.

Circular motion :

Let us consider a punctual charged particle M (\(+q\)) of mass \(m\) in motion in a uniform magnetostatic field \(\vec B_0=B_0\vec u_z\).

The initial velocity of the particle is perpendicular to the field.

It is, for instance, along the (Ox) axis :

\(\vec v_0=v_0 \vec u_x\)

The second law of motion will give the radius of the circle (we suppose \(q>0\)) :

\(m\frac{v_0^2}{R}=qv_0B_0\)

So :

\(R=\frac{mv_0}{qB_0}\)

The particle moves in a circular orbit with a constant angular velocity (called cyclotron angular velocity) :

\(\omega_0=\frac{v_0}{R}=\frac{qB_0}{m}\)

Helical motion :

Let us consider a punctual charged particle M (\(+q\)) of mass \(m\) in motion in a uniform magnetostatic field \(\vec B_0=B_0\vec u_z\).

The initial velocity of the particle is given. By picking the axises right, we write it :

\({\vec v_0} = {v_0 }\sin \alpha \;{\vec u_x}\; + \;{v_0 }\cos \alpha \;{\vec u_z}\)

The trajectory contained in the plane perpendicular to the (Oz) axis is a circle of radius :

\(R=\frac{mv_0sin\alpha}{qB}\)

which the particle follows with a constant angular velocity \(\omega_0\).

The trajectory with respect to the (Oz) axis is rectilinear and uniform.

The particle speed is : \(v_0cos\alpha\;\vec u_z\).

The trajectory is a helix with constant pitch.

This pitch \(h\) (the width the particle travels after one period of the circular motion) is :

\(h=\frac{2\pi}{\omega_0}v_0cos\alpha\)

Some videos about motions in magnetic field (http://physics-animations.com/) :

Electromagnetic method of isotopes separation

Pour lire la vidéo, cliquer ici :

Focusing of paraxial beam of charged particles in magnetic field

Pour lire la vidéo, cliquer ici :

FondamentalElectric and magnetic fields

Helix with variable pitch :

Let us consider a punctual charged particle M (\(+q\)) of mass \(m\) in motion in a uniform magnetostatic field \(\vec B_0=B_0\vec u_z\) and a uniform elctrostatic field \(\vec E_0=E_0\vec u_z\).

The initial velocity of the particle is given. By picking the axises right, we write it :

\({\vec v_0} = {v_0 }\sin \alpha \;{\vec u_x}\; + \;{v_0 }\cos \alpha \;{\vec u_z}\)

With respect to the axis (Oz), the motion is accelerated :

\(z(t)=\frac{qE_0}{2m}t^2+v_0cos\alpha\)

Cycloid :

Let us consider a punctual charged particle M (\(+q\)) of mass \(m\) in motion in a uniform magnetostatic field \(\vec B_0=B_0\vec u_z\) and a uniform elctrostatic field \(\vec E_0=E_0\vec u_y\).

The particle is initially at the origin O. Its initial velocity is zero.

We note :

\({\omega _c} = qB/m\)

We can show that the parametric equations of the trajectory are :

\(x = \frac{E}{{B{\omega _c}}}({\omega _c}t - \sin {\omega _c}t)\;\;\;\;;\;\;\;\;y = \frac{E}{{B{\omega _c}}}(1 - \cos {\omega _c}t)\;\)

Une animation Java sur un filtre de vitesse et la mesure du rapport e / m :

Animation java (Jean-Jacques Rousseau, Université du Mans), cliquer ici :

Une vidéo illustrant le mouvement d'une particule dans des champs électrique et magnétique croisés (http://physics-animations.com/) :

Motion of the charged particles in the crossed electric and magnetic fields

Pour lire la vidéo, cliquer ici :

SimulationJAVA animations by Jean-Jacques Rousseau (Université du Mans)

  • Protons dans un champ magnétique et électrique : click here

  • Charge dans un champ magnétique avec frottement : click here

  • Principe du cyclotron : click here

  • Principe de l'accélérateur linéaire : click here

  • Principe du spectromètre de masse : click here