Electromagnetic energy review

FondamentalDensity of power given by the electromagnetic field to matter

An electromagnetic field will interact with charged particles and give them energy.

In fact, a charge \(q\) is subject to Lorentz' force from this electromagnetic field, which has a power of :

\(P_L = q(\vec E + \vec v \wedge \vec B).\vec v = q\;\vec E.\vec v\)

By writing \(n\) the number of charge carriers by volume unit, the density of power given by the electromagnetic field to matter is expressed by :

\(p_L = \frac{{dP_L }}{{d\tau }} = nq\;\vec E.\vec v = \vec j.\vec E\)

Remark :

The power received by the electromagnetic field from charge carriers is equal to \(-p_L\) (do the analogy with \(p_S\), the density of power received by a heat-conductor setting from the heat sources, see below).

RappelEnergy conservation equation in conductive phenomena (see lesson about thermal transfers)

Let us consider a volume \((V)\) delimited by a closed surface \((S)\) (steady in the referential of study).

The total internal energy \(U(t)\) included in the volume at the time t is :

\(U(t) = \iiint_{(V)} u(M,t)\;d\tau\)

Where \(u(M,t)\) is the density of internal energy.

The internal energy conservation allows us to write :

\(\frac{{dU}}{{dt}} = -\oint_{(S)}\vec {j}_{th}.\vec{n} \ dS + \iiint_{(V)} p_s (M,t)\;d\tau\)

The volume \((V)\) is steady, so :

\(\frac{{dU}}{{dt}} = \frac{d}{{dt}}\left( { \iiint_{(V)} u\;d\tau} \right) =\iiint_{(V)} \frac{\partial u(M,t)}{\partial t}d\tau\)

By using the divergence theorem (or Green - Ostrogradsky's law), it comes :

\(\iiint_{(V)} \frac{\partial u(M,t)}{\partial t}d\tau= \iiint_{(V)} \left( {( - div\vec j_{th} \; + p_s (M,t))d\tau } \right)\)

This result is true for any volume \((V)\), so :

\(\frac{{\partial u(M,t)}}{{\partial t}} = - div\vec j_{th} + p_s (M,t)\)

This equation had been proven in the one dimension case.

FondamentalLocal conservation of electromagnetic energy equation

By using the analogy with conservation equations (charge, mass, diffusion, heat) we would like to get an equation of this kind :

\(\frac{{\partial e_{em} }}{{\partial t}} = - div\;\vec \Pi + ( - \vec j.\vec E)\)

Where \(e_{em}\) represents the density of electromagnetic energy (included in the electromagnetic field).

\( \vec \Pi\) is a vector called the "Poynting vector".

It is supposed to give the direction of the electromagnetic energy exchanges (especially by calculating its flux through a surface).

The following calculation is not on the curriculum :

The product \(\vec j .\vec E\) can be expressed as such by using Maxwell - Ampere's equation :

\(\overrightarrow {rot} \;\vec B = \mu _0 \vec j + \varepsilon _0 \mu _0 \frac{{\partial \vec E}}{{\partial t}}\)

\(\vec j.\vec E = \frac{1}{{\mu _0 }}\vec E.\overrightarrow {rot} \;\vec B - \varepsilon _0 \vec E.\frac{{\partial \vec E}}{{\partial t}} = \frac{1}{{\mu _0 }}\vec E.\overrightarrow {rot} \;\vec B - \frac{1}{2}\varepsilon _0 \frac{{\partial (\vec E^2 )}}{{\partial t}}\)

By writing that :

\(div(\vec E \wedge \vec B) = \vec B.\overrightarrow {rot} \;\vec E - \vec E.\overrightarrow {rot} \;\vec B = \vec B.\left( { - \frac{{\partial \vec B}}{{\partial t}}} \right) - \vec E.\overrightarrow {rot} \;\vec B\)

Hence :

\(\vec E.\overrightarrow {rot} \;\vec B = - \frac{1}{2}\frac{{\partial (\vec B^2 )}}{{\partial t}} - div(\vec E \wedge \vec B)\)

Thus :

\(\vec j.\vec E = - \frac{1}{{2\mu _0 }}\frac{{\partial (\vec B^2 )}}{{\partial t}} - \frac{1}{{\mu _0 }}div(\vec E \wedge \vec B) - \frac{1}{2}\varepsilon _0 \frac{{\partial (\vec E^2 )}}{{\partial t}}\)

Then :

\(\frac{\partial }{{\partial t}}\left[ {\frac{{\varepsilon _0 \vec E^2 }}{2} + \frac{{\vec B^2 }}{{2\mu _0 }}} \right] = - div(\frac{{\vec E \wedge \vec B}}{{\mu _0 }}) + ( - \vec j.\vec E)\)

Can be written :

  • Electromagnetic density of energy :

    \(e_{em} = \frac{{\varepsilon _0 \vec E^2 }}{2} + \frac{{\vec B^2 }}{{2\mu _0 }}\)

  • Poynting vector :

    \(\vec \Pi = \frac{{\vec E \wedge \vec B}}{{\mu _0 }}\)

Thus the equation can be written this way :

\(\frac{{\partial e_{em} }}{{\partial t}} = - div\;\vec \Pi +(- \vec j.\vec E)\)

And thus corresponds to an electromagnetic energy assessment.

AttentionPoynting Energy assessment

  • Density of electromagnetic energy :

    \(e_{em} = \frac{{\varepsilon _0 \vec E^2 }}{2} + \frac{{\vec B^2 }}{{2\mu _0 }}\)

  • Poynting vector :

    \(\vec \Pi = \frac{{\vec E \wedge \vec B}}{{\mu _0 }}\)

Local conservation of electromagnetic energy :

\(\frac{{\partial e_{em} }}{{\partial t}} = - div\;\vec \Pi+( - \vec j.\vec E)\)

The integral form of the conservation of electromagnetic energy is :

\(\frac{d}{dt}(\iiint_V e_md\tau)=- \oint_S\vec {\vec \Pi}.\vec{n} \ dS +\iiint_V (-\vec j .\vec E) d\tau\)

RemarqueEnergy propagation velocity

By proceeding to an analogy with the charge conservation equation, an energy propagation speed (written \(\vec u\)) can be defined with this relation :

\(\vec u = \frac{{\vec \Pi }}{{e_{em} }}\) (analogy : \(\vec v=\vec j /\rho_{mobile}\)

ExempleEnergy balance for the conductive energetic field

Let us consider a conductive thread of conductivity \(\gamma\), associated to a cylinder of axis \((Oz)\) and of radius \(a\).

A steady and uniform electric field reigns, both inside and outside the wire :

\(\vec E = E_0 \;\vec u_z\)

The wire is then crossed by volumic currents of uniform density :

\(\vec j = j \vec u_z = \gamma E_0 \vec u_z\)

The magnetic field created by this distribution is of this kind :

\(\vec B=B(r)\vec u_{\theta}\)

It can be computed using Ampere's circuital law.

By writing \(I=\pi a^2\) the total current crossing the transversal section of the wire, then :

  • If \(r<a\) :

    \(\vec B(r) = \frac{{\mu _0 I}}{{2\pi \;a^2 }}\;r\;\vec u_\theta\)

  • If \(r>a\) :

    \(\vec B(r) = \frac{{\mu _0 I}}{{2\pi }}\frac{1}{r}\;\vec u_\theta\)

Poynting's vector is :

\(\vec \Pi = \frac{{\vec E \wedge \vec B}}{{\mu _0 }}\)

Thus :

  • If \(r<a\) :

    \(\vec \Pi = - \frac{{E_0 I}}{{2\pi \;a^2 }}\;r\;\vec u_r\)

  • If \(r>a\) :

    \(\vec \Pi = - \frac{{E_0 I}}{{2\pi }}\frac{1}{r}\;\vec u_r\)

The general expression of electromagnetic energy conservation is reminded :

\(\iiint_{(V)} \frac{\partial e_{em}}{\partial t}d\tau=- \oint_{(S)}\vec {\vec \Pi}.\vec{n} \ dS - \iiint_{(V)} \vec j .\vec E d\tau\)

In the particular case of steady-state :

\(\oint_{(S)}\vec {\vec \Pi}.\vec{n} \ dS=-\iiint_{(V)} \vec j .\vec E d\tau=-\iiint_{(V)} \frac{j^2}{\gamma}d\tau\)

Physically, in steady-state, the power dissipated by Joule effect is evacuated outside the volume \((V)\).

We compute the exiting flux of the Poynting vector through a cylinder of \(Oz\) axis and radius \(r\).

  • If \(r<a\) :

    \(\Phi = - \frac{{E_0 I}}{{\pi a^2 }}\pi r^2 h = - \frac{{j^2 }}{\gamma }\pi r^2 h\)

  • If \(r>a\) :

    \(\Phi = - \frac{{E_0 I}}{{\pi a^2 }}\pi a^2 h = - \frac{{j^2 }}{\gamma }\pi a^2 h\)

We can recognize easily, in both cases, the power absorbed by Joule effect in the cylinder of radius \(r\) considered (the volumic Joule dissipated power is \(p_J=\vec j \vec E = j^2 /\gamma\)).

The previous conservation equation is verified.

Vidéo sur le dipôle magnétostatique passif

Pour lire la vidéo : cliquer ici