Ampère's circuital law

Presentation of electricity and magnetism video (Référence : "Physique collégiale")

Pour lire la vidéo :

Fondamental

Stokes theorem, which we use without demonstration, is the equivalent of Ostrogradsky's theorem.

Stokes' theorem :

Let \((C)\) be an oriented closed loop and \((S)\) a given surface which is supported by \((C)\) (as if it was a hat and \((C)\) was the extremity).

The normal vector of the surface \((S)\) is oriented with the Right-hand rule.

Stokes theorem is :

\(\oint_{(C)} {\vec B..d\vec r} = \iint_S \overrightarrow {rot} \;\vec B.\vec n\;dS\)

This theorem allows us to write Ampère's circuital law in its integral form.

Maxwell- Ampère equation in static regime is :

\(\;\overrightarrow {rot} \;\vec B = \mu _0 \vec j\)

We compute the line integral of the magnetic field around a closed loop \((C)\) at a given moment. A surface \((S)\) is supported by \((C)\).

Let's use the Maxwell- Ampère equation :

\(\oint_{(C)} {} \vec B.d\vec \ell =\iint_S \overrightarrow {rot} \;\vec B.\vec n\;dS =\iint_S{\mu _0}\vec j.\vec n\;dS\)

We recognize :

\(i = \iint \vec j.\vec n\;dS\)

The intensity going through \((S)\).

Hence Ampère's circuital law is :

\(\oint_{(C)} {} \vec B.d\vec \ell =\iint_S{\mu _0}\vec j.\vec n\;dS=\mu_0 i\)

AttentionFlux and circulation of B (Ampère's circuital law)

  • The flux piercing through a closed surface of \(\vec B\) is equal to zero :

    \( \oint_S\vec {B}.\vec{n} \ dS=0\)

  • Ampère's circuital law :

    \(\oint_{(C)} {} \vec B.d\vec \ell =\iint_S{\mu _0}\vec j.\vec n\;dS=\mu_0 i\)

MéthodeClassic use of Ampere's circuital law

Ampère's circuital law helps computing easily a magnetic field in a highly symmetrical problem, especially in these must-know classic examples :

  • Infinite wire (without thickness) crossed by a current \(I\) :

    \(\vec B=\frac{\mu_0 I}{2\pi}\frac{1}{r}\vec u_{\theta}\)

    The cylindrical base is used.

  • Infinitely long solenoid, composed of \(n\) whorls by length unit, crossed by a current \(I\) :

    \(\vec B_{ext}=\vec 0\)

    \(\vec B_{int}=\mu_0 n I \;\vec u_z\)

A JAVA animation by JJ.Rousseau on the field of a solenoid :

Une vidéo sur les lignes de champs d'un solénoïde :

Magnetic field created by a torus (the one from the picture above), composed of \(N\) whorls crossed by current \(I\) :

  • \(\vec B_{ext}=\vec 0\)

  • \(\vec B_{int}=\frac {\mu_0 N I}{2\pi r} \vec u_{\theta}\)

The cylindar base is used.

Magnetic filed in a toroidal coil (vidéo) :

Simulation

A Java animation by JJ.Rousseau on the field of a torus :