Reflection of an electomagnetic wave on a non perfect metal

Take 20 minutes to prepare this exercise.

Then, if you lack ideas to begin, look at the given clue and start searching for the solution.

A detailed solution is then proposed to you.

If you have more questions, feel free to ask them on the forum.

Ohmic conductor of conductivity \(\gamma\) occupies the half-space \(x>0\), the space \(x<0\) being vacuum.

An incident wave of the form :

\(\underline {\vec E}_i=E_0exp(j\omega (t-x/c))\;\vec u_z\)

propagates in a vacuum.

It gives birth to a transmitted wave of the form (see the lecture notes on the skin effect) :

\(\underline {\vec E}_{t}=\underline t\; E_0exp(j(\omega t-\underline k x))\;\vec u_z\)

With :

\(\underline k=\frac{1-j}{\delta}\;\;\;\;\;and\;\;\;\;\;\delta=\sqrt{\frac{2}{\mu_0\gamma\omega}}\)

And a reflected wave of the form :

\(\underline {\vec E}_r=\underline r \;E_0exp(j\omega (t+x/c))\;\vec u_z\)

Question

Determine the corresponding magnetic fields.

Solution

The structure of a progressive harmonic plane wave gives to the incident wave and the reflected wave, the following expressions of magnetic fields :

\(\underline {\vec B}_i=\frac{\vec u_x \wedge \underline {\vec E}_i}{c}=-\frac{E_0}{c}e^{j\omega(t-x/c)}\;\vec u_y\)

And :

\(\underline {\vec B}_r=\frac{-\vec u_x \wedge \underline {\vec E}_r}{c}=\underline r \frac{E_0}{c}e^{j\omega(t+x/c)}\;\vec u_y\)

For the transmitted wave, the structure of relationship is written as :

\(\underline {\vec B}_t=\frac{\underline k \vec u_x \wedge \underline {\vec E}_t}{\omega}=-\underline k \;\underline t \frac{E_0}{ \omega}e^{j(\omega t - \underline k x)}\;\vec u_y\)

Question

Assume there are no surface currents.

By writing the boundary condition of the electrical and magnetic fields, to establish the expression of \(\underline t\) as a function of \(\alpha = \omega\delta/c\).

Ensure that for \(\alpha<<1\) (what is assumed hereafter), we have :

\(\underline t=\alpha(1+j)\)

limiting the calculations to the order \(1\) in \(\alpha\).

Solution

The boundary condition of the electrical and magnetic fields in \(x=0\) leads to the following two equations :

  • \(1+\underline r = \underline t\)

  • \(-\frac{1}{c}+\frac{\underline r}{c}=-\frac{\underline k \underline t}{\omega}\;\;\;\;\) so \(\;\;\;\;1-\underline r = \frac{(1-j)\underline t}{\alpha}\)

These two equations allow to deduce the complex transmission coefficient :

\(\underline t = \frac {2\alpha}{1+\alpha -j}=\frac{2\alpha(1+\alpha+j)}{(1+\alpha)^2+1)}\)

The first order in \(\alpha <<1\) :

\(\underline t \approx \frac{2\alpha(1+j)}{2}\)

Hence :

\(\underline t \approx \alpha(1+j)\)

Question

In fact, the conductor has a surface \(S\) in the plane \(x=0\).

  • Calculate the time average flux of the Poynting vector in \(x=0^+\).

    What does this magnitude represent ?

  • Show that the time average of the power dissipated by Joule effect in a volume \(Sdx\) of conductive element is :

    \(\left\langle {dP_J } \right\rangle = \gamma \alpha ^2 E_0^2 \exp ( - 2x/\delta )\;Sdx\)

    Deduce the temporal average power dissipated by Joule effect throughout the conductor.

    Compare with the results of the previous question.

Indice

  • One can calculate the average value of the Poynting vector with the expressions of the complex fields using the relationship :

    \({\left\langle {\vec \Pi } \right\rangle _t} = \frac{1}{2}{\mathop{\rm Re}\nolimits} \left( {\frac{{{{\underline E }_t} \wedge \underline B _t^{\;*}}}{{{\mu _0}}}} \right)\)

  • Use local Ohm's law (\(\vec j = \gamma \vec E\))

Solution

  • The electric field is transmitted :

    \(\underline {\vec E}_{t}=\underline t\; E_0exp(j(\omega t-\underline k x))\;\vec u_z\)

    Using complex expressions of \(\underline t\) and \(\underline k\), we get :

    \(\underline {\vec E}_t=\alpha(1+j)E_0 e^{-x/\delta} e^{j(\omega t -x/\delta)}\;\vec u_z\)

    Thus, for \(x=0^+\) :

    \(\underline {\vec E}_t(0^+,t)=\alpha(1+j)E_0 e^{j\omega t}\;\vec u_z\)

Similarly, the transmitted magnetic field is, at \(x=0^+\) :

\(\underline {\vec B}_t(0^+,t)=\frac {2\alpha E_0}{\delta \omega} e^{j\omega t}\vec u_y\)

The mean value of the transmitted Poynting vector, at \(x=0^+\), is :

\({\left\langle {\vec \Pi } \right\rangle _t} =\frac {1}{2} Re (\frac{{{{\underline {\vec E} }_t} \wedge {{\underline {\vec B}^* }_t}}}{{{\mu _0}}})\)

Hence :

\({\left\langle {\vec \Pi } \right\rangle _t} = \frac {\alpha E_0^2}{\mu_0 c} \;\vec u_x\)

The flux of this vector through the conductor surface \(S\) is the electromagnetic power \(P\) transmitted to the metal :

\(P={\left\langle { \Pi } \right\rangle _t}S = \frac {\alpha E_0^2}{\mu_0 c}S\)

  • The power density dissipated by Joule effect is :

    \(p_v=\vec j .\vec E=\gamma \vec E\;^2\)

    The average value of the power density dissipated by Joule effect within the metal (the depth \(x\)) is :

    \(\left\langle {p_v(x)} \right\rangle = \frac{1}{2}\gamma {\left| {\underline E(x,t) } \right|^2}\)

    So :

    \(\left\langle {p_v(x)} \right\rangle = \gamma \alpha^2 E_0^2 e^{-2x/\delta}\)

    And the time average of the power dissipated by Joule effect in a volume \(Sdx\) of conductive element is :

    \(\left\langle {dP_J } \right\rangle =\left\langle {p_v(x)} \right\rangle \;Sdx= \gamma \alpha ^2 E_0^2 \exp ( - 2x/\delta )\;Sdx\)

The total average power dissipated in the conductor will be :

\({P_J} = \int_0^\infty {\gamma {\alpha ^2}E_0^2{e^{ - 2x/\delta }}Sdx} = \frac{\gamma \alpha^2 E_0^2 S \delta}{2}=\frac{{{\alpha ^2}E_0^2S}}{{{\mu _0}\omega \delta }}\)

And, finally :

\(P_J= \frac {\alpha E_0^2}{\mu_0 c}S\)

We find the same expression as before :

\(P=P_J\)

In time average, the electromagnetic power transmitted from the wave to the metal is completely dissipated by Joule effect.