Electrostatic dipole

DéfinitionElectrostatic dipole

A rigid set of two punctual charges \(+q\) and \(-q\) (globally neutral) at the distance \(2a\) from each other is called an “electrostatic diplole”.

Such a model can explain :

  • Polar molecules (for instance : HCl, H2O)

  • Atom polarization in an exterior electric field (solvation of ions phenomenon)

FondamentalDetermination of the potential created by the dipole

We calculate the potential created by the dipole located in a point M in space.

Revolution symmetry around (Oz) axis : we choose \(M(r,\theta)\) in the plane of the two charges.

Under the dipole approximation \(r>>a\) (we study the charges from « far » away, i.e. at a distance greatly superior to a few \(nm\)).

The potential in the point M is (superposition principle) :

\(V(M) = \frac{1}{{4\pi {\varepsilon _0}}}\frac{q}{{{r_P}}} - \frac{1}{{4\pi {\varepsilon _0}}}\frac{q}{{{r_N}}} = \frac{1}{{4\pi {\varepsilon _0}}}q\left( {\frac{1}{{{r_P}}} - \frac{1}{{{r_N}}}} \right)\)

(With : \({r_P} = PM\;and\;{r_N} = NM\; > > \;a\))

According to the Chasles relation :

\(\overrightarrow {PM} = \overrightarrow {OM} - \overrightarrow {OP} = \vec r - a\;{\vec u_z}\)

The squared value :

\(P{M^2} = {r^2} + {a^2} - 2\vec r.a\;{{\vec u}_z}\;\;\;\;\;so\;\;\;\;\;r_P^2 = {r^2} + {a^2} - 2ar\cos \theta\)

Then we compute \(1/r_P\) :

\(\frac{1}{{{r_P}}} = \frac{1}{{\sqrt {{r^2} + {a^2} - 2ar\cos \theta } }} = {\left( {{r^2} + {a^2} - 2ar\cos \theta } \right)^{ - 1/2}}\)

The Taylor expansion until the order \(1\) is :

\({\left( {1 + x} \right)^{ - 1/2}} \approx 1 - \frac{1}{2}x\;\;\;\;\;(x < < 1)\)

Let \(x\) be such as \(x=a/r\) (\(x<<1\)), then :

\(\frac{1}{{{r_P}}} = \frac{1}{r}{\left( {1 + \frac{{{a^2}}}{{{r^2}}} - 2\frac{a}{r}\cos \theta } \right)^{ - 1/2}} \approx \frac{1}{r}\left( {1 + \frac{a}{r}\cos \theta } \right)\)

In the same manner (if \(\theta\) is substituted by \(\pi-\theta\) and \(cos\theta\) by \(-cos\theta\)) :

\(\frac{1}{{{r_N}}} = \frac{1}{r}\left( {1 - \frac{a}{r}\cos \theta } \right)\)

Then :

\(\frac{1}{{{r_P}}} - \frac{1}{{{r_N}}} = 2\frac{a}{{{r^2}}}\cos \theta\)

Thus the potential :

\(V(M) = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{(2aq)}}{{{r^2}}}\cos \theta\)

The dipole moment vector of the electrostatic dipole can be defined by (the vector is oriented from the negative charge to the positive one) :

\(\vec p = (2aq)\;{\vec u_z} = q\overrightarrow {NP}\)

Then (the potential decreases like \(1/r^2\)) :

\(V(M) = \frac{1}{{4\pi {\varepsilon _0}}}\frac{p}{{{r^2}}}\cos \theta\)

By posing \(\vec u_r = \vec r/r\) :

\(V(M) = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\vec p.{{\vec u}_r}}}{{{r^2}}}\;\;\;\;\;({\vec u_z}.{\vec u_r} = \cos \theta )\)

DéfinitionDipole moment vector

The dipole moment vector is a characteristic of the electrostatic dipole.

In the international system of units \(p\) is expressed in \(C.m\).

Yet the Debye unit is more adapted :

\(1\;D = {3,33.10^{ - 30}}C.m\)

Example :

A molecule of water has a dipole moment.

Deduce the charges \(+\delta\) and \(-2\delta\) carried respectively by hydrogen and oxygen atoms.

We know (see figure) :

\(\alpha = (OH,OH) = 104^\circ \;\;\;;\;\;\;\ell = OH = 0,096\;nm\)

The total dipole moment is given by :

\({\vec p_{{H_2}O}} = {\vec p_{OH}} + \vec p{'_{OH}}\)

With :

\({p_{OH}} = p{'_{OH}} = \ell \delta\)

Consequently :

\({p_{{H_2}O}} = 2\ell \delta \cos \frac{\alpha }{2}\)

Thus can be deduced :

\(\delta = \frac{{{p_{{H_2}O}}}}{{2\ell \cos \frac{\alpha }{2}}} \approx \frac{e}{3}\;\;\;\;\;(e = {1,6.10^{ - 19}}C)\)

MéthodeCalculation of the electrostatic field under dipole approximation

The intrinsic relation \(\vec E = - \overrightarrow {grad} \;V\) lets us calculate the field (in polar coordinates) :

\(\left\{ \begin{array}{l}{E_r}(r,\theta ) = - \frac{{\partial V}}{{\partial r}} \\{E_\theta }(r,\theta ) = - \frac{1}{r}\frac{{\partial V}}{{\partial \theta }} \\\end{array} \right.\)

Consequently :

\(\left\{ \begin{array}{l}{E_r} = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{2p\cos \theta }}{{{r^3}}} \\{E_\theta } = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{p\sin \theta }}{{{r^3}}} \\\end{array} \right.\)

Or even :

\(\vec E = \frac{1}{{4\pi {\varepsilon _0}}}\frac{p}{{{r^3}}}\left( {2\cos \theta \;{{\vec u}_r} + \sin \theta \;{{\vec u}_\theta }} \right)\)

ComplémentDipole field topography

  • Equipotential surface :

    The equipotential surface (\(\Sigma_0\)) equation at the potential \(V_0\) is :

    \(For\;M\; \in \;({\Sigma _0})\;\;:\;\;V(M) = \frac{1}{{4\pi {\varepsilon _0}}}\frac{p}{{{r^2}}}\cos \theta = {V_0}\)

    Thus the equation in polar coordinates :

    \({r^2} = A\cos \theta \;\;\;\;\;\;\;\;\;(A = cste)\)

    The aspect of equipotential lines is shown on the following picture.

    The axis perpendicular to (Oz) and passing through point O is the zero equipotential.

    By rotating around (Oz), these lines create equipotential surfaces.

  • Field lines :

    On the field line passing through point M :

    \(d\vec r \wedge \vec E = \vec 0\)

    Or :

    \(\left\{ \begin{array}{l}d\vec r = dr\;{{\vec u}_r} + r\;d\theta \;{{\vec u}_\theta } \\\vec E = {E_r}\;{{\vec u}_r} + {E_\theta }\;{{\vec u}_\theta } \\\end{array} \right.\)

    Thus :

    \(dr\;{E_\theta } - r\;d\theta \;{E_r} = 0\)

    And :

    \(\frac{{dr}}{{{E_r}}} = \frac{{r\;d\theta }}{{{E_\theta }}}\)

By replacing the field coordinates by their expressions :

\(\frac{{dr}}{{2\cos \theta }} = \frac{{r\;d\theta }}{{\sin \theta }}\)

Let's separate variables :

\(\frac{{dr}}{r} = 2\frac{{\;\cos \theta }}{{\sin \theta }}d\theta = 2\frac{{\;d(\sin \theta )}}{{\sin \theta }}\)

Then :

\(d(\ln r) = d(\ln (\sin {\theta ^2}))\)

Let \(r\) be \(r=r_0\) for \(\theta=\pi/2\). Then, by integration, we obtain the equation of the field lines in polar coordinates (\(r_0\) is a parameter) :

\(\ln \left( {\frac{r}{{{r_0}}}} \right) = \ln (\sin ^2{\theta})\;\;\;\;\;\;\;so\;\;\;\;\;\;\;r = {r_0}\sin^2 {\theta}\)

The aspect of field lines is given on the previous picture.

FondamentalAction of an exterior electric field on a dipole

Let an electrostatic dipole be immersed in an electric field \(\vec E_0\) which can be supposed uniform at the dipole scale.

What effect does the field have on the dipole ?

  • System studied : the (rigid) dipole

  • Referential of study : laboratory referential (supposed Galilean)

The dipole undergoes two forces \(q \vec E_0\) and \(-q\vec E_0\) which addition is equal to zero.

The dipole undergoes a “force torque”, which moment in relation to O is :

\({\vec M_O} = \overrightarrow {OP} \wedge q{\vec E_0} + \overrightarrow {ON} \wedge ( - q{\vec E_0})\)

Thus :

\({\vec M_O} = (\overrightarrow {OP} - \overrightarrow {ON} ) \wedge q{\vec E_0} = q\overrightarrow {NP} \wedge {\vec E_0}\)

Finally :

\({\vec M_O} = \vec p \wedge {\vec E_0}\)

Under the effect of an electric field, the dipole starts spinning in order to align with the direction of the field (\(\vec p\) and \(\vec E_0\) in the same orientation, stable equilibrium position).

Energetic study :

Let \(V\) be the potential from which the field \(\vec E_0\) ; the potential energy of the (rigid) dipole in this field is :

\({E_p} = qV(P) + ( - q)V(N) = q\left[ {V(P) - V(N)} \right]\)

We remind that \(\vec E_0\) is a gradient field, so :

\(dV=-\vec E . d\vec r\)

Thus, with \(dV=V(P)-V(N)\) :

\(d\vec r = \overrightarrow {OP} - \overrightarrow {ON} = \overrightarrow {NP}\)

Then :

\({E_p} = q( - {\vec E_0}.\overrightarrow {NP} )\)

So :

\({E_p} = - \vec p.{\vec E_0}\)

\(E_p\) is minimum (stable equilibrium position) when \(\vec p\) and \(\vec E_0\) are oriented in the same way.

The following picture illustrates the solvation phenomenon : water molecules align with the field lines created by the charge \(Na^+\).