Faraday's law

Fondamental

The Maxwell-Faraday equation is :

\(\vec {rot}\vec E=-\frac {\partial\vec B}{\partial t}\)

Stoke's theorem applied to a thread-like closed circuit (C) :

\(\iint_{(S)} \vec {rot}\vec E.\vec n \;dS=\oint_{(C)} \vec E.d\vec \ell=-\frac{d}{dt}(\iint_{(S)} \vec B.\vec n\; dS)\)

Hence :

\(e=-\frac {d\Phi_{\vec B}}{dt}\)

Where :

\(\Phi_{\vec B}=\iint_{(S)} \vec B.\vec n\; dS\)

is the magnetic flux through the circuit (C).

AttentionFaraday's law

In the Galilean laboratory, the induced electromotive force along a closed still circuit is opposed to the time derivative of the magnetic flux through the circuit :

\(e=-\frac {d\Phi_{\vec B}}{dt}\)

ExempleA video about Faraday's law of induction (CHM nano education)

La loi de Faraday

Pour lire la vidéo, cliquer ici :

SimulationJAVA animation of Jean-Jacques Rousseau (Université du Mans)

Faraday's law, click here :